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Interpretable Predicting Creep Rupture Life of Superalloys:
Enhanced by Domain-Specific Knowledge

Jiawei Yin, Ziyuan Rao,* Dayong Wu,* Haopeng Lv, Haikun Ma, Teng Long, Jie Kang,
Qian Wang, Yandong Wang, and Ru Su*

Evaluating and understanding the effect of manufacturing processes on the
creep performance in superalloys poses a significant challenge due to the
intricate composition involved. This study presents a machine-learning
strategy capable of evaluating the effect of the heat treatment process on the
creep performance of superalloys and predicting creep rupture life with high
accuracy. This approach integrates classification and regression models with
domain-specific knowledge. The physical constraints lead to significantly
enhanced prediction accuracy of the classification and regression models.
Moreover, the heat treatment process is evaluated as the most important
descriptor by integrating machine learning with superalloy creep theory. The
heat treatment design of Waspaloy alloy is used as the experimental
validation. The improved heat treatment leads to a significant enhancement in
creep performance (5.5 times higher than the previous study). The research
provides novel insights for enhancing the precision of predicting creep
rupture life in superalloys, with the potential to broaden its applicability to the
study of the effects of heat treatment processes on other properties.
Furthermore, it offers auxiliary support for the utilization of machine learning
in the design of heat treatment processes of superalloys.
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1. Introduction

Due to exceptional properties at high tem-
peratures, Ni-based wrought superalloys
have become essential materials in aero-
engine manufacturing.[1] During their ser-
vice, creep rupture is one of the main failure
forms.[2] Consequently, conducting thor-
ough evaluations of creep rupture life be-
comes crucial for achieving scientifically ro-
bust designs and ensuring reliable and safe
service of superalloys. However, determin-
ing creep life data through experimental
methods is time-consuming and costly.[3]

Several theoretical approaches, e.g., time-
temperature parameters methods[4] and
creep constitutive models,[5] have been pro-
posed to accelerate the creep rupture life
prediction and show promise in this field.
Nevertheless, evaluating creep rupture life
necessitates the consideration of complex
factors, such as alloy composition, molding
processes, heat treatment (HT) conditions,
and environmental influences. As a result,

the conventional approaches suffer from limitations includ-
ing inadequate predictive accuracy, insufficient microstruc-
tural understanding, and incomplete microstructure evolution
considerations.[4]

The rapid progress in computational science has promoted
machine learning (ML) as the preferred approach for revealing
the complex relationships between material characteristics and
relevant properties.[5] In recent years, ML has made remarkable
achievements in predicting creep rupture life for superalloys. For
example, Venkatesh et al.[6] successfully achieved precise predic-
tions exceeding 90% for the creep life of single crystal superal-
loys by incorporating pertinent material features into neural net-
work models. Shin et al.[7] were pioneers in integrating a high-
throughput computational thermodynamic approach with ML
for the prediction of creep performance in superalloys. They uti-
lized Pearson’s correlation coefficient and maximal information
coefficient analysis to identify stress and creep test temperature
as the primary influencing features for the creep performance.
Furthermore, Han et al.[8] innovatively deduced creep fracture
life by adjusting the predicted test stress, introducing novel in-
sights for creep life prediction. However, the majority of previ-
ous research only used alloy compositions and processing condi-
tions as the ML descriptors, which limits the generalization of ML
models due to the lack of physical constraints in the “black box”
of the models.[9] Zhu et al.[10] attempted to utilize atomistic-level
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physical features, e.g., atomic radius/volume and electronegativ-
ity, to predict the creep rupture life of superalloys. Nevertheless,
this approach lacks research on creep damage mechanisms, re-
sulting in insufficient model interpretability.

Moreover, most of the previous researches only depend on
ML models consisting of statistical learning methods, i.e., fit-
ting the non-linear relationship between the composition and
the creep performance. These models lack the incorporation of
enough physical constraints from the domain-specific knowl-
edge. Even in practical studies, there is a lack of adequate anal-
ysis of the HT process.[11] From the ML perspective, the use of
high-quality, high-dimensional descriptors, coupled with robust
domain-specific knowledge as input, can significantly mitigate
the issue of overfitting and boost the predictive accuracy of the
model commonly encountered in contemporary ML methods,[12]

including neural networks with an excessive number of neu-
rons. Furthermore, the successful evaluation of HT’s influence
on creep rupture life can assist ML models in distinguishing
the relationship between various HT processes and creep perfor-
mance, thereby enhancing prediction accuracy. From the mate-
rials science perspective, the creep performance can be signif-
icantly improved by adjusting HT parameters such as heating
temperature[13] and cooling method,[14] accompanied by differ-
ent creep mechanisms. And these process parameters can be op-
timized effectively by powerful interpretable ML models in con-
junction with optimization algorithms such as Bayesian Opti-
mization. However, to date, there is a notable absence of research
in the field of utilizing ML to evaluate the influence of HT on the
creep rupture life of superalloys. This is due to the fact that this
task is often considered one of the costliest endeavors, requiring
the acquisition of reliable labeled data followed by iterative im-
provements through ML. As a result, this endeavor has not yet
garnered attention in the relevant domain.

To address this research gap, our study investigates the re-
lationship between HT and the creep performance of superal-
loys with interpretable classification and regression models. To
achieve this goal, in addition to the basic features, we utilized
the CALPHAD (CALculation of PHAse Diagrams) method to
introduce domain-specific knowledge, i.e., the dissolution tem-
perature and the size of 𝛾′/𝛾′′ phases and the volume fraction
of 𝛿 phase. Simultaneously, four types of physical features, re-
flecting creep performance and accounting for process-structure-
performance relationships, were collected and used to evalu-
ate HT. The regression model’s coefficient of determination
improved from 0.612 to 0.857 and significant improvements
were also obtained in the evaluation indexes of the classification
model. Using this ML approach to optimize the HT, the newly ac-
quired HT results in significant improvement compared to pre-
vious studies (Figure 1).

2. Results

We use the workflow in Figure 1 to show our framework and
how to use it to achieve HT optimization with enhanced creep
rupture life. Figure 1a presents the model process, i.e., label HT,
evaluate HT, and creep rupture prediction. Figure 1b shows the
experimental validation for HT optimization based on the three
processes.

The details are shown below:

1) Label HT: we first partitioned the original dataset into two sub-
sets, i.e., dataset 1 and dataset 2, with domain-specific knowl-
edge. Dataset 1 contains HT processes that positively affect
creep life (Labeling it as 1), whereas Dataset 2 (Labeling it as
0) does not. We further evaluate the prediction performance
of the different ML models on these two datasets. Dataset 1
exhibits superior predictive performance, a quality attributed
to the inclusion of crucial features and the precise application
of domain knowledge. In contrast, dataset 2 demonstrates rel-
atively poorer performance in prediction. This phenomenon
may be attributed to lower correlations between the features
and creep rupture life or other unaccounted factors.

2) Evaluate HT: obtaining labeled high-quality data is a costly
step in ML. Utilizing ML models to label and incremen-
tally augment unlabeled HT data is crucial for superalloy
development. Establishing a suitable classification model is
paramount, considering the limited availability of datasets,
potential lower accuracy, and constrained extrapolation capa-
bilities in direct ML applications. For effective HT evaluation,
we employed distinct classification models for each selected
alloy to achieve optimal performance. Moreover, acknowledg-
ing the typical “black-box” nature of ML models, we intro-
duced key physical features based on the process-structure-
performance relationship. This not only aids in evaluating HT
processes but also enhances model interpretability, striking a
balance between physics-based constraints and the intricate
correlations behind ML.

3) Creep rupture prediction: After the preliminary evaluation of
HT, candidate data is obtained. Given the high cost of creep
experiments, we further utilize regression models and un-
supervised learning methods to screen these candidate HT
processes. To accurately predict creep rupture life, we employ
key feature selection methods in the predictive model based
on the Pearson correlation coefficient and exhaustive search.
Based on the finding in process 1, we contend that utilizing
dataset 1 for predicting the creep rupture life holds greater
practical and research significance. Our method allows us to
pinpoint the key alloy components and process parameters
for prediction from a multitude of features. Our key feature
screening methodology significantly improves the accuracy of
the model for predicting creep rupture life.

4) Experimental validation: we use the HT design of Waspaloy al-
loy as an example. Initially, we employ a classification model
embedding physical features for the preliminary evaluation
and screening of the designed HT. To determine which HT
process can achieve the optimal creep life, we utilize a regres-
sion model (after screening features) to predict the creep life.
The ultimate goal is to achieve process optimization with ex-
tremely low experimental costs. The improved HT led to a sig-
nificant enhancement in creep performance (5.5 times higher
than the previous study).

2.1. Labeling HT Processes on Creep Rupture Life Prediction and
Evaluation of HT by Transfer Learning

To conduct an initial evaluation of the HT process and facil-
itate subsequent classification and regression models, we use
two methods (i.e., statistical method and mechanism method)
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Figure 1. Approach overview. a) We presented a workflow framework for ML-based prediction of creep rupture life and evaluation of HT processes. The
framework consists of three primary steps: (I) Evaluating HT via domain-specific knowledge; (II) Evaluating HT via a physics-informed classification
model and (III) Predicting creep rupture life by regression models enhanced by screening key features. SVR represents support vector regression. b) In
the experimental validation phase, initially, we employ a classification model embedding physical features for the preliminary evaluation and screening
of the designed HT. To determine which HT process can achieve the optimal creep life, we utilize a regression model (after screening features) to predict
the creep life. The ultimate goal is to achieve process optimization with extremely low experimental costs.
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Figure 2. a) Schematic of the procedure of the evaluation of the HT process via specific knowledge. By using two methods, the overall dataset was
divided into two datasets, dataset 1 and dataset 2. b) Schematic diagram of transfer learning for evaluating HT of superalloy using total data transfer.

to manually classify the dataset to be dataset 1 and dataset 2
as shown in Figure 2a. The details of the evaluation are con-
structed as follows: First, we evaluate whether there exist thresh-
olds for the same alloy type under approximate creep conditions,
if yes, we use the statistical method, if not, we use the mecha-
nism method. Second, if we use statistical methods, the thresh-
old value for creep rupture life is selected as the median. Third, if
we use the mechanism method, the HT is evaluated by analyzing
whether the microstructure of the alloy is suitable for the creep
test conditions. More details are elaborated in Section S2 (Sup-
porting Information). In summary, we used the above methods
to evaluate the effect of the HT process on creep rupture life and
divided the dataset into two datasets.

As shown in Table 1, we conducted prediction by using five ML
regression models: Random Forest (RF), Gradient Boosting Re-
gressor (GBR), Multi-Layer Perceptron Regression (MLPR), Lin-
ear Regression (LR), and SVR. The SVR model achieved the most
accurate predictions and was not overfitting. Additionally, as in-
dicated in Table 2, when predicting each dataset separately, no-
table improvements were observed in the predictions for Dataset
1 compared to Dataset 2. From a practical standpoint, utilizing
dataset 1 for predicting the creep life of superalloys not only
yields more reliable results but also highlights the positive ef-

fects of the included HT on creep performance. Moreover, lever-
aging the foundation of the following classification model allows
for further refinement of suitable HT processes. Therefore, pre-
dicting the creep life of superalloys using dataset 1 makes more
sense. The superior predictive performance of dataset 1 also un-
derscores the indispensable nature of domain-specific expertise
in ML.

Given that ML can automatically evaluate HT processes un-
doubtedly enhances efficiency compared to manual annotation.
However, there is significant variation in the scale of HT data

Table 1. Overall prediction performance of the five ML models for the two
datasets (tenfold cross-validation).

Candidate models R2-Ave R2-Dev RMSE-Ave RMSE-Dev

SVR 0.676 0.151 0.535 0.507

RF 0.582 0.122 0.747 1.012

GBR 0.489 0.236 0.791 0.722

MLPR 0.488 0.153 0.787 1.122

LR 0.438 0.172 0.786 0.915

*Ave = Average, Dev = Deviation.
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Table 2. The prediction of the SVR for dataset 1 and dataset 2.

Score Dataset R2 Error

1-Ave 0.612 6.45%

1-Dev 0.151 2.35%

2-Ave 0.405 14.39%

2-Dev 0.272 12.75%

for each alloy, with some alloys having extremely limited avail-
able datasets. Therefore, applying ML algorithms directly to such
small datasets for HT is not feasible. To overcome this challenge,
we carefully considered transfer learning (TL) as a solution,[15] be-
lieving in its effectiveness in retaining useful features from the
pre-trained model to other individual tasks. We meticulously se-
lected 208 data points from the entire dataset, representing four
distinct alloy types (also referred to as clusters, totaling 4 clus-
ters). The specific selection criteria are detailed in Section S3
(Supporting Information). Through this framework shown in
Figure 2b, we first pre-trained a classification model using all
data from cluster 1 to cluster 4. After that, in the TL, we freeze
the first layer of the model, and only re-train the second layer,
aiming to retain useful features from the pre-trained model for
better adaptation to different clusters. We commence the model
training process by pre-training on an extensive dataset, encom-
passing clusters 1, 2, 3, and 4. This initial phase is crucial to glean
a comprehensive understanding of diverse patterns and features
present in the data. Subsequently, armed with the insights gained
from the pre-training phase, we embark on the fine-tuning task
on clusters 1 to 4, respectively. The final predictions are shown
in Table 3, for clusters 1 and 2, both the training and validation
accuracies are relatively high, while the overall performance of
clusters 3 and 4 is comparatively poor. Overall, the performance

of Cluster 1 and Cluster 2 in transfer learning is better than
that of Cluster 3 and Cluster 4. Given the unsatisfactory predic-
tive performance of the TL method, we subsequently adopted an
approach of establishing separate classification models for each
data cluster to explore the evaluation of HT by ML in our next
section of work.

2.2. Evaluation of HT Processes by Supervised ML Models

Considering the suboptimal predictive performance of the TL
method, we directly employ a supervised learning approach for
prediction in this section. Obtained classification results were an-
alyzed and presented in Table 4 (for detailed prediction results, re-
fer to Section S3, Supporting Information). According to the no
free lunch theorem, five different ML models were employed for
each model. By comprehensively evaluating the accuracy and Auc
values, we selected the best model from SVC (Support vector clas-
sifier), RFC (Random-forest classifier), DTC (Decision tree clas-
sifier), MLPC (Multi-layer perceptron classifier), and BC (Bag-
ging Classifier) models. As shown in Table 5, DTC, MLPC, and
BC show the best results and were therefore chosen as the op-
timal models. The results indicated that cluster 2 demonstrated
the best predictive performance, followed by cluster 3. However,
clusters 1 and 4 predict ion performance as subpar, with an ac-
curacy of only 70%, and an Auc value even lower than 0.8. This
implies that the model prediction capabilities do not have enough
practical value. The initial results highlighted imbalances in pre-
dictive outcomes among the various clusters and shortcomings
in predictive accuracy.

After additional physical features were incorporated (The
physical features added for each data cluster are presented in
Table S3, Supporting Information), the improved predictions re-
sulting from the inclusion of these new features are presented

Table 3. Prediction results for each cluster were obtained by using all data for pre-training through transfer learning. (The ratio of the training set to the
testing set is 4:1).

Data cluster models Evaluation scores for the model

Validation accuracy (tenfold) Accuracy (testing set) Auc values (testing set)

All alloys Pre-trained 71.21% 76.19% 81.40%

Cluster 1 Transfer learning 71.43% 77.60% 95.80%

Cluster 2 Transfer learning 72.22% 68.18% 95.83%

Cluster 3 Transfer learning 40.00% 66.70% 88.90%

Cluster 4 Transfer learning 40.00% 63.30% 77.70%

Table 4. Prediction results for each data cluster without added physical features.

Data cluster Optimal model Evaluation scores for the model

Accuracy (tenfold) Accuracy (testing set) Auc value (testing set)

All alloys / 79.70% 80.95% 0.82

Cluster 1 DTC 63.33% 75.00% 0.73

Cluster 2 MLPC 86.36% 86.36% 0.87

Cluster 3 BC 86.00% 83.33% 0.83

Cluster 4 BC 70.83% 66.67% 0.75

*The data clusters from 1 to 4 represent Waspaloy, IN718, U720Li, and AD730 alloy.
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Table 5. Inputs, outputs labels, and indicators for model evaluation used
in this ML approach.

Model Inputs and
outputs

Indicators for
model evaluation

Inputs Regression
model

Composition R2

RMSE
MAPE

HT parameters

Testing condition

Outputs Creep rupture life

Inputs Classification
model

Composition Accuracy
Precision

Recall
F1-score
Auc value

HT parameters

Testing condition

Physical features

Outputs HT evaluation

R2, RMSE, and MAPE represent the coefficient of determination, Root Mean Square
Error, and Mean Absolute Percentage Error, respectively.

in Table 6 Remarkably, the performance of the model signifi-
cantly improved after the integration of these additional features.
As shown in Table 6, after incorporating the physical features,
DTC, MLPC, and RFC demonstrated the best results and were
therefore chosen as the optimal models. Among them, cluster 3
showed the most notable improvement, which had a prediction
accuracy of 100% on its testing set. These results underscore the
enhanced reliability and practical value of the classification model
following the incorporation of these physical features. Further-
more, a comprehensive comparison was conducted between the
predictions of all testing sets, as illustrated in Figure 3a–e. The
evaluation metrics, including accuracy, precision, recall, and F1-
score, demonstrated substantial improvements over the previous
model upon integrating the new features. Moreover, there was a
notable enhancement in the percentages of TP and TN, and the
area of the Roc curve is significantly improved with the addition
of physical features. These findings reinforced the influential role
of the new features in the classification model, affirming the re-
liability of our classification modeling approach and presenting
novel insights for the application of ML techniques in the field of
superalloys. The predictive results demonstrated the crucial role
of the physical features obtained from experiments in ML mod-
els. However, acquiring a substantial amount of usable physical
feature data through experiments is both time-consuming and
expensive. Hence, utilizing a small amount of experimental data
to train ML models for predicting the required physical features
emerges as a potential solution. Taking grain size after HT as an
example, currently, it can only be acquired through physical in-

spection, i.e., metallography. Consequently, we employed an ML
model to predict post-HT grain sizes (for detailed prediction re-
sults, refer to Section S5, Supporting Information).

2.3. Improve Creep Rupture Life Prediction via Screening Key
Features

To improve the prediction accuracy of the model and identify the
key features that influence creep rupture life. Consider that the
Pearson correlation coefficient can effectively quantify the linear
relationship between continuous variables and systematically ex-
plore the entire parameter space. As shown in Figure 4a, in the
first step, we traversed the Pearson correlation coefficients (r) per
feature, utilizing the median (a) as the threshold for assessing the
inter-feature correlations. Only when the correlation coefficient
exceeded the threshold (|r| > a) did we include that feature in the
construction of the regression model and evaluate its impact on
the MAPE. In the second step, the retention frequency of each
feature was counted following the completion of the nested for
loops. These features were categorized into two distinct subsets
to differentiate their influence on alloy composition and HT pro-
cess parameters. Furthermore, during the process, features that
appeared fewer than five times were excluded. This filtering mea-
sure was implemented because they typically exert a significant
impact on creep performance, e.g., SaT (stable aging tempera-
ture) and Sat (stable aging time), among others, despite some
features having a low frequency in feature retention. Due to the
limitations of a single screening method, some crucial features
might be mistakenly omitted. In the third step, we retained ex-
perimental temperature and stress variables, while the remain-
ing 16 features underwent exhaustive screening for composition
and process conditions using the SVR model. Model construction
commenced with the two feature sets retained from the second
step, progressively removing one feature in each iteration. This
process continued until the termination condition was met. After
each iteration, we retained only those features that significantly
reduced the MAPE value. Ultimately, we identified ten key fea-
tures that exerted a significant influence on creep life.

Figure 4b–e shows the feature screening results based on the
screening strategy. In the second step, Ni and Co are excluded
along with the Stt (solid solution treatment time). In the third
step, the alloy composition was refined by removing Fe, Nb,
Mo, W, and Zr. Furthermore, SaT, Sat, and At (aging time) from
the HT parameters were also eliminated. Based on the discus-
sion above, ten key features were identified. The predictive per-
formance of the model was then evaluated using these ten key

Table 6. Prediction results for each data cluster with added physical features.

Data Cluster Optimal model Evaluation scores for the model

Accuracy (tenfold) Accuracy (testing set) Auc value (testing set)

All alloys / 85.88% 92.85% 0.91

Cluster 1 MLPC 82.50% 87.50% 0.83

Cluster 2 DTC 87.51% 95.45% 0.93

Cluster 3 MLPC 83.33% 100.00% 1.00

Cluster 4 RFC 80.00% 83.33% 0.88
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Figure 3. a) Comparison of prediction results of the testing set between models without and with the addition of new features; b) Roc plots for training
data classification prediction without embedding physical features (tenfold cross-validation); c) Confusion matrix for models without physical features;
d) Roc plots for training data classification prediction with physical features (tenfold cross-validation); e) Confusion matrix for models with physical
features.

features to predict creep rupture life, yielding notably enhanced
results. As shown in Figure 4f,g, the coefficient of determina-
tion (R2) value of the model was improved from 0.612 to 0.857.
This finding underscores the efficacy of our key feature screen-
ing methodology in significantly improving the accuracy of the
model for predicting creep rupture life in superalloys.

2.4. Full-Flow Validation of ML Approach with Experiments

To optimize the HT process of superalloys, a series of HT pro-
cesses have been designed based on Waspaloy alloy. By using the
ML approach, various schemes were validated, and the model-
predicted results guided the optimal selection of the process. In

Adv. Sci. 2024, 2307982 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307982 (7 of 15)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202307982 by M

PI 337 Iron R
esearch, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 4. a) Steps for screening features based on the SVR model. b,c) Feature screening results of the second step (StT represents “AT” and “r” stands
for the solution treatment temperature, aging temperature, and correlation coefficient. PdT is an abbreviation for 𝛾″/𝛾″′ phases dissolution temperature);
d,e) Feature screening results of the third step. f,g) Predictive performance of the SVR on dataset 1 (before and after the screening of key features) (tenfold
cross-validation).

this design, as shown in Table 7, we devised a new HT for the
Waspaloy. (Detailed information on the experiment can be found
in Section S5, Supporting Information)

In Figure 5, we illustrate the validation process and final re-
sults of the heat treatment optimization using the machine learn-

ing approach. In Figure 5a, we employed a classification model
with embedded physical features to conduct a preliminary as-
sessment of candidates for the Waspaloy alloy. The results indi-
cate that heat treatment processes beyond sample 3, with a solu-
tion treatment temperature exceeding 1020 °C, positively impact

Adv. Sci. 2024, 2307982 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307982 (8 of 15)
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Figure 5. a) Results of a preliminary evaluation of potential designs (Optimization of HT based on Waspaloy alloy with specific process parameters
detailed in Table 7). b) Further prediction of potential targets through a regression model. c) Variation curves of the creep strain to the creep time d) The
visualization of the HT parameters in a 2D space. The color bar represents the value of ln (Creep rupture life). And the red pentagram shows the position
of the candidate process when mapped to 2D space. e) Illustration of the proposed new design alloy candidate for the application of a high-stress service
environment. f) Comparison of the performance of the newly designed process with the previous study.

creep performance. Subsequently, in Figure 5b, after feature se-
lection for creep life prediction using a regression model, we ob-
served a turning point in the performance curve starting from
sample 4. Due to inherent predictive errors in the model, we
have not conclusively determined which heat treatment process

is superior. Following this, we performed dimensionality reduc-
tion and visualization on all candidate and training data (refer
to Figure 5c). The yellow region represents heat treatment pro-
cesses with high creep rupture life, with only samples 3 and 4
(red pentagrams) falling within the central area. The exclusion of

Adv. Sci. 2024, 2307982 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307982 (9 of 15)
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Table 7. Newly designed HT for Waspaloy.

Number StT [°C] Stt [h] SaT [°C] Sat [h] AT [°C] At [h]

1 1010 4 0 0 760 16

2 1020 4 0 0 760 16

3 1030 4 0 0 760 16

4 1040 4 0 0 760 16

5 1060 4 0 0 760 16

6 1080 4 0 0 760 16

samples 5 and 6 (blue pentagons) may be related to the fact that
the structure obtained by the heat treatment process is not the
optimal solution under the tested conditions. The experimental
results for the final selected two samples are shown in Figure 5d.
As depicted in Figure 5e,f, the results demonstrate a significant
improvement in creep performance with the enhanced heat treat-
ment process, with sample 3 being particularly noteworthy. This
comprehensive validation ensures the feasibility of our final se-
lection in practical applications, leading to substantial perfor-
mance improvements in engineering applications.

3. Discussion

3.1. The Role of New Features for Classification Models

Conventional ML adopts a “black-box” modeling approach, which
makes it difficult to reveal the intrinsic mechanisms of perfor-
mance and structure. Introducing physical features into the ML
model to achieve outstanding performance has been validated in
frontier research.[17] Therefore, as shown in Figure 6a, we based
the ML method on the relationships between process–structure–
performance, when considering the addition of new features, the
main aspects to take into account are as follows:

First, as depicted in the pink region shown in Figure 6a, the StT
is a crucial step in regulating the grain size as well as the size and
distribution of 𝛾′/𝛾′′ phases. When the StT exceeds the dissolu-
tion temperature of the 𝛾′/𝛾′′ phases, the grains lose the pinning
effect of the strengthening phase and exhibit significant growth.
Therefore, when the solid StT exceeds the dissolution tempera-
ture of the 𝛾′/𝛾′′ phases, (Ordinal Encoding is employed) it is la-
beled as 1, while it is labeled as 0 when it does not exceed the dis-
solution temperature. Additionally, the temperature difference
between the solid solution temperature and the strengthening
phase temperature (StT-PdT) was introduced to enhance differ-
entiation between data points and improve prediction accuracy.

Second, grain size plays a pivotal role in influencing polycrys-
talline alloy creep properties. As indicated in the gray region on
the right side of Figure 6a, the creep performance of superal-
loys exhibits a high sensitivity to grain size, and the HT pro-
cess offers an effective means to precisely control grain size for
enhancing alloy performance. Typically, fine-grain strengthen-
ing is considered a conventional method for strengthening al-
loys during low-temperature service. However, it is important
to note that fine grain structure does not universally enhance
material strength under all conditions.[18] Researches indicate
that with the increase in material testing temperature, the effi-
cacy of grain refinement in improving material strength gradu-

ally diminishes.[19] This phenomenon arises because, when the
experimental temperature is equal to or higher than the equico-
hesive temperature, the strength within the grains exceeds that
at the grain boundaries, causing grain refinement to undermine
the alloy performance. Moreover, during creep experiments, al-
loy grain boundaries experience sliding, leading to fracture prop-
agation along grain boundaries.[20] Therefore, considering grain
size as a feature input is essential for evaluating the impact of HT
processes on creep properties.

Third, as indicated in the gray region on the left side of
Figure 6a, the creep resistance of the superalloys depends mainly
on the hindrance of the motion of 𝛾′ phase relative to the dislo-
cations. Creep deformation is mainly driven by the interaction
between dislocations, which move along different slip system di-
rections intersecting with the 𝛾′ phase, including the dislocation
shearing and Orowan by-passing mechanisms.[1] The strength-
ening effect of the 𝛾 ’ phase relative to the alloy is generally esti-
mated using the critical resolved shear stress (CRSS) ∆𝜏. When
the 𝛾′/𝛾′′ phases particles are under critical size, they can be
sheared or deformed by dislocations, including weakly coupled
dislocations for shear and strongly coupled dislocations for shear.
For small particles, the CRSS is determined by the stress neces-
sary to move weakly coupled dislocation pairs, according to Equa-
tion (1)[21]:

Δ𝜏 = 1
2

(Γ
b

) 3
2

(
bdf
T

) 1
2

A − 1
2

(Γ
b

)
f (1)

where Γ is the anti-phase boundary energy of the 𝛾′ in the {111}
plane, b is the burgers vector of the edge dislocation in the 𝛾 ma-
trix, d the 𝛾′/𝛾′′ phases particle diameter, f the volume fraction
of the 𝛾′/𝛾′′ phases precipitates, T the line tension of the disloca-
tion, and A a numerical factor depending on the morphology of
the particles. For spherical particles A = 0.72.

For larger 𝛾′/𝛾′′ phases particles, where dislocations cut in
strongly coupled pairs, the CRSS is given by Equation (2)[22]:

Δ𝜏 =
(1

2

)
1.72 Tf 1∕2

bd

(
1.28 dΓ

wT

) 1
2

(2)

where w is a constant which accounts for the elastic repulsion be-
tween the strongly paired dislocations, and which is of the order
of unity.

Conversely, if the precipitate size is larger than the critical size,
the strong dislocation pair can cut through or bypass precipitates
by Equation (3)[23]:

Δ𝜏 = 𝜇b
l

(3)

where μ is the shear modulus, l is the particle phase spacing, that
is, when the particle phase size increases, the spacing l also in-
creases.

When the 𝛾′/𝛾′′ phase size does not exceed the critical size,
an increase in the size of strengthening phase particles and vol-
ume fraction effectively enhances their ability to resist dislocation
shear. However, excessively large particle sizes weaken their hin-
dering effect on dislocations. Therefore, well-dispersed fine 𝛾′/𝛾′′

phases achieve significant strengthening effects. It provides

Adv. Sci. 2024, 2307982 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307982 (10 of 15)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202307982 by M

PI 337 Iron R
esearch, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 6. a) New physical features added to data clusters. Rc, Mc, and Sc, respectively, represent the cooling rates of different cooling methods (corre-
sponding to rapid, medium, and slow cooling). For example, methods such as water cooling, air cooling, and furnace cooling. b) Cluster 1: SHAP value
summary plot; c) Cluster 2: SHAP value summary plot; d) Cluster 3: SHAP value summary plot; e) Cluster 4: SHAP value summary plot. G-s presents
grain size.
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sufficient strengthening effects when the size is below the crit-
ical size and, during the creep deformation, continues to moder-
ately slow down the coarsening rate of the strengthening phase,
thereby enhancing creep resistance. Therefore, introducing the
size of the 𝛾′/𝛾′′ phase particles as a physical feature would help
the ML model effectively evaluate the effect of the HT process on
creep performance.

Fourth, as shown in the blue indigo part of Figure 6a, the
cooling rate influences the precipitation process, morphology,
and size of the 𝛾′/𝛾′′ phases.[24] A faster cooling rate promotes
the precipitation of spherical and finely distributed strengthen-
ing phases, resulting in enhanced alloy strengthening. How-
ever, an excessively rapid cooling rate can lead to thermal resid-
ual stress concentration and subsequent deforming cracking.[25]

Conversely, a slower cooling rate allows for sufficient atom diffu-
sion, leading to the formation of bulk strengthening phases and
secondary/tertiary strengthening phases of varying sizes.[26] This
adversely affects creep properties. Therefore, considering an ap-
propriate cooling rate is crucial for optimizing HT.

The SHAP (SHapley Additive Explanations) method was used
to assess the influence of each key feature on the prediction.
As shown in Figure 6b–e, ten key features were selected and
ranked based on their importance. It is worth noting that most
of the newly added physical features have become critical fac-
tors influencing the classification model. For cluster 1, the out-
standing creep performance is associated with increasing the StT,
medium-sized grains, and refined 𝛾′ phase. In cluster 2, the key
to achieving ideal creep properties lies in reducing the volume
fraction of the 𝛿 phase through HT. For clusters 3 and 4, the pa-
rameters related to aging and solution treatment, determine the
creep performance. Relatively lower ATs, faster cooling rates, and
appropriately sized grains and 𝛾′ phase particles can effectively
improve the creep life.

3.2. Analysis for Insufficient Prediction of Conventional SVR
Model

From the perspective of data distribution, as depicted in
Figure 7a1,a2, the majority of the data concentrates in the
medium to high-stress and medium to high-temperature range
in creep conditions, exhibiting a significant range of fluctuations.
Notably, all outliers are located within this specific data range.
Strengthening phase and dislocation interactions in such envi-
ronments are influenced by shearing, Orowan bypass, and ther-
mally activated climb bypass mechanisms.[27] Consequently, dif-
ferent microstructures emerge under different creep conditions
characterized by varying combinations of stress and tempera-
ture. However, due to the complexity of the creep mechanisms
involved, the features present in this dataset fail to adequately
represent the inherent variations in creep mechanisms, resulting
in significant deviations between predicted and actual measure-
ments.

To further conduct a visual analysis of the input features and
based on comprehensiveness and interpretability, we adopted a
method that combines random forest feature importance anal-
ysis and the SHAP model to demonstrate the impact of input
on creep rupture life. Turning to feature engineering, Figure 7b1
shows the ranking of feature importance, among the key alloy

compositions, Mo occupies the top position. Traditionally, Mo
is primarily employed as a refractory element in superalloys for
solid-solution strengthening.[28] However, the collected super-
alloys in this study rely on precipitation strengthening, which
hinges on the addition of Al and Ti with the role of Mo being less
apparent. Moreover, some researchers have posited that an exces-
sive concentration of Mo accelerates the precipitation of the TCP
phase (topo-logically closed phase), thereby detrimentally impact-
ing creep rupture life.[29]

3.3. Analysis of Key Feature Screening Method

As shown in Figure 7b2,c2, the random forest importance and the
SHAP model were employed. Notably, variations in the impor-
tance rankings were observed between the two methods. These
discrepancies can be attributed to the different algorithms em-
ployed to determine the importance of strengths. Importantly,
the goal of importance ranking in this study is not to establish
one method as superior, but to explore how different features af-
fect creep rupture life.

Ti, Al, C, and B are primary constituents of the strengthen-
ing phases in superalloys. In addition to their role in strengthen-
ing phase formation,[1] Ti and Al also contribute to solid solution
strengthening, thereby increasing the yield strength.[30] The ef-
fect of elements C and B on the creep resistance of superalloys
remains a subject of debate. Generally, the C content in super-
alloys should be limited to less than ≈0.1 wt.% to avoid detri-
mental effects on alloy toughness and creep properties caused
by the presence of primary carbides (MC).[31] B has been found
to improve intergranular bonding and increase grain size during
creep, thereby significantly enhancing the creep resistance of the
alloy.[32]

However, the influence of the Cr on creep properties exhibits a
dual nature. In Ni-based superalloys, Cr primarily enhances high-
temperature oxidation and corrosion resistance by forming a pro-
tective oxide layer on the alloy surface.[33] However, at elevated
temperatures, atomic-scale mechanisms cause the aggregation
of Cr elements in the dislocation network,[34] creating diffusion
channels and concentration gradients between the matrix phase
and the reinforcing phase. This results in directional coarsen-
ing of the reinforcing phase along the elemental concentration
gradient, leading to a reduction in the material creep resistance.
Conversely, in the study of Co-based superalloys, Cr plays a role
in reducing lattice mismatch, slowing down the coarsening rate
of the 𝛾 ’ phase, and enhancing the effect of antiphase boundary
energy and the strengthening effect of the 𝛾 ’ phase, thereby im-
proving creep properties.[33a,35] Moreover, Cr has been reported
to have the strongest effects in the stacking faults energy on both
the 𝛾 and 𝛾 ’ phases which can improve creep property.[36] Accu-
rately determining the precise effect of Cr on creep properties
remains a challenge. ML results indicated that Cr is considered
the most critical element influencing the alloy creep resistance.
The advantage of ML lies in its ability to handle complex relation-
ships between targets and features, avoiding misleading results
caused by unclear mechanisms. Therefore, in subsequent studies
aimed at improving the creep performance of alloys, Cr should be
considered one of the most crucial features in modifying alloys.
Additionally, Figure 7c1 reveals that the creep properties of the
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Figure 7. (a1) and (a2) are scatter plots and violin-type plots for test temperature and stress. b1) The importance ranking of the initial input features
(Random Forest); b2) The ranking of feature importance of key features (Random Forest); c1) SHAP value summary plot; c2) mean |SHAP value| bar
graph. (All of the above are analyses for dataset 1).

alloy can be effectively enhanced by appropriately increasing the
content of Cr and Ti in the alloy composition while controlling
the levels of Al, C, and B within reasonable ranges.

The ML model suggests focusing on StT and AT. This is closely
linked to the development of superalloy. With an increase in the
𝛾 ’ phase within the alloy,[37] adopting a multi-step aging process

often results in the precipitation of coarser strengthening phases,
leading to instability in the size and quantity of the 𝛾 ’ phase
during service.[38] In contrast, single aging facilitates achiev-
ing a fine and uniform distribution of strengthening phases
within the alloy, increasing the quantity of strengthening phases,
and thereby enhancing the alloy’s performance. Therefore, in
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designing HT processes for superalloys at elevated temperatures,
it is advisable to simplify aging steps, considering StT and AT as
crucial parameters for coordinating alloy structure. By empha-
sizing these aspects, efforts can be made to improve the design
and optimization of superalloy HT processes, thereby enhanc-
ing creep resistance and overall performance. Notably, the PdT
plays a significant role in determining creep rupture life. Previ-
ous investigations have revealed that raising the dissolution tem-
perature of the 𝛾′/𝛾′′ phases enhances the creep performance
of superalloys.[39] This improvement allows them to withstand
higher Orowan stresses at elevated temperatures and increases
the number of 𝛾/(𝛾′/𝛾′′) phase interfaces to impede dislocation
movement.[40]

It is noteworthy that there remains room for improvement in
achieving a better fit for a few data points. Those data primarily
stemmed from differences in synthesis procedures and process-
ing methods. The manufacturing information is often entirely in-
dependent of each other, rendering them unsuitable for accurate
representation using conventional encoding methods. Further-
more, these methods can significantly inflate the input feature
space, potentially leading to inaccuracies in ML models, partic-
ularly when dealing with high-dimensional data and relatively
small datasets.[41] Nevertheless, the exploration of natural lan-
guage processing techniques for addressing this challenge holds
promise as a potential solution.[42]

4. Conclusion

In this study, we developed an interpretable ML approach to in-
vestigate the influence of HT processes on the creep properties of
superalloys and enhanced the accuracy of creep rupture life pre-
diction. First, we curated a representative dataset, capturing the
creep performance of the alloy, which served as the foundation
for predicting creep rupture life. Subsequently, a classification al-
gorithm was employed to evaluate the impact of HT processes on
creep behavior. Furthermore, the regression model provided ac-
curate predictions of creep rupture life. Notably, the models were
validated with a newly designed HT, demonstrating significant
improvement compared with the previous study. In summary,
our developed ML method offers an efficient and effective means
to evaluate the influence of HT processes on the creep proper-
ties of superalloys while significantly improving creep rupture
life prediction accuracy. The approach considers crucial factors
such as HT process parameters and selected microstructural pa-
rameters to streamline the alloy design process. The enhanced
creep rupture life prediction through HT leads to considerable
time and cost savings.

5. Experimental Section
Modeling: In the classification model, Key physical features based

on process–structure–property relationships were combined with conven-
tional classification models, evaluation of HT processes, and enhance-
ment of model interpretability. The feature-based screen strategy proposed
in this paper aimed to obtain the key features affecting the creep rupture
life. The process of obtaining the essential factors included three steps:
Correlation screening, counting, and exhaustive elimination.

Evaluation of ML Models: To verify the generalization capability of ML
models, tenfold cross-validation was performed on alloy samples. To eval-

uate the performance of the models, four widely used evaluation metrics:
R2, RMSE, MAPE, and Error, were utilized as expressed in Equations (4–7),
respectively.

R2 = 1 −
∑n

i=1

(
ymeasured − ypredicted

)
∑n

i=1 (ymeasured − ymean)
(4)

RMSE =

√√√√ 1
n

n∑
i=1

(
ypredicted − ymeasured

)2
(5)

MAPE = 100%
n

n∑
i=1

||||
ypredicted − ymeasured

ymeasured

|||| (6)

Errors =
∑n

i=1

((
ymeasured − ypredicted

)
∕ymeasured

)
n

× 100% (7)

where ymeasured denotes the actual output, ypredicted denotes the predicted
output, ymean represents the average of the actual output, and n is the num-
ber of data points. R2 is one of the most important metrics for evaluating
the accuracy of a regression model. MAPE and RMSE are other important
metrics for evaluating the prediction error of models.

For classification models, the generalization ability of the models was
evaluated by using tenfold cross-validation and hold-out methods, and the
models were evaluated quantitatively using accuracy, precision, recall, Auc
values, and F1-score. Equations (8–11) represent the definition.

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1 − score = 2TP
2TP + FP + FN

(11)

TP, FN, TN, and FP are the main parameters that form the confusion
matrix. The Auc value is the area under the Roc curve.

Statistical Analysis: A significance test through Analysis of Variance
(ANOVA) was conducted to validate whether there were significant differ-
ences in the assessed results of different HT on creep rupture life. By com-
paring the significance level (𝛼 value of 0.05), the creep rupture life data
were analyzed for various HTs. The results, as detailed in Table S2 (Sup-
porting Information), indicated that the observed differences were unlikely
to be due to random factors but were more likely associated with actual
variations in the evaluation process. This clearly indicated a significant im-
pact of different HT on creep rupture life.

Experimental Details: The experimental details of the ML method-
based reverse design optimization of HT are described in the section in
Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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